Report 1.1 Governance structure, communication flow and methods

All management and coordination practices are summarized in the present document, which serve as Project Handbook and all its contents are mandatory, after the previous acceptance of the consortium.
The governance structure set out in the present document define roles, responsibilities and activities of the different committees, organizations and bodies belonging to the project as well as decision rules.
The complements to this document are: the Annex I and the Consortium Agreement. The Consortium Agreement is the prevailing document where general rules and responsibilities of the Beneficiaries and Consortium bodies are listed.


Download the report:
Report 1.1 Governance structure.pdf

      Report 2.1a State of the art of energy-efficiency design at building and neighbourhood levels

Task T2.1 is planned to provide the necessary background knowledge on the current policies and guidelines on building energy efficiency in the countries of Design4Energy (D4E) project partners together with the State-of-the-Art research and development in the domain of design for energy efficient buildings. Energy efficiency and the context of neighbourhood are given a special attention in order to identify how design relevant aspects can best be improved within the other tasks of D4E by further developing the existing practices of the building design stage.

Finally, the outcome of the study included two main research aspects:
• Guidelines and policies:
Current design guidelines and standards to support the D4E were identified. Energy design guidelines and current practices from numerous sources were extracted. One main source, common to all EU-member states, is the building energy performance Directive 2010/31/EU. National regulations implementing this directive are challenging but instrumental to give practical measures to improve energy efficiency of buildings in specific countries.
• Research and developments activities:
Necessary learning was gathered from relevant past and current EU projects and initiatives related to applications of ICT technologies to neighbourhoods and extended urban areas. Existing tools with potential for design and planning of neighbourhood and building from the viewpoints of energy were explored

Download the report:
Report 2.1a State of the art of energy-efficiency design at building and neighbourhood levels.pdf

      Report 2.1b Indicators and success factors for holistic energy matching

This document reports on the indicators and success factors for holistic energy design of buildings and neighbourhoods to support the development of the D4E design methodology. Energy demand of a neighbourhood includes the energy demand of buildings but also other urban infrastructures, such as waste and water management, parks, open spaces and public lighting, as well as the energy demand from transport.

The most relevant KPIs for consideration in the D4E project are listed, including identification of measurements and/or calculations necessary to be carried out in the demonstration sites.
This report suggests the principle rules for the indicators of holistic design of buildings and neighbourhoods. The indicators show to what extent holistic targets have been adopted and been met by design solutions. The frameworks give a holistic approach to defining requirements and aspects that have to be considered in an energy efficient design on neighbourhood level.


Download the report:
Report 2.1b Indicators and success factors for holistic energy matching.pdf

      Report 2.2a Visionary scenarios of holistic energy efficiency design
      Report 2.2b Definition of usage scenarios with economic and environmental criteria
      Report 3.1 Current State and requirements in Components and energy systems data bases

With the objective to develop a suitable database for the Design4Energy (D4E) workspace, the requirement identification of the component and energy system database started from the analysis of the existing database solutions. The classification, evaluation and analysis of the state of the art of the BIM and energy efficiency oriented database have inspired the requirement identification and also the approach, concept and functionalities design in T3.2.

The key information presented within this deliverable can be summarised as follows:
• Objectives and vision of the component and energy system database.
• Analysis of existing database solutions. By classifying the current practices into three categories: construction material database, component database and others such as building type database, different technologies and platforms are analysed.
• Identification and analysis of the major stakeholders related to the D4E scope.
• Questionnaire design and the collected results
• Database requirement in system architecture, interoperability, data structure, user interface and user management.
• Database requirement description of the simulation outputs, specifying the interesting data which could help the end users to understand their on-going building design.
• Database requirement description of the operation and maintenance related issues.
• Database requirement description of building components, including envelope (wall, covers/roof, floor), window and door. The recommended parameters are given in table format.
• Database requirement description of energy systems, focusing on the subcategories like lighting system, renewable energy, heat pump, boiler, energy storage and distribution, in each subcategory, requirements for specific technologies are described. Introduction of the strengths and weaknesses of the latest and popular technologies is also included in appendices.



Download the report:
Report 3.1 Current State and requirements in Components and energy systems data bases.pdf

      Report 3.2 Concept Design of the components and energy systems database

This report aims at creating a database system architecture for the novel design process in the building and district energy domain developed in the Design4Energy project..

The key information presented within this deliverable can be summarised as follows:
• Possible software platforms are analysed and evaluated for the usage in the database system.
• Analysis of use cases of the database system.
• Detailed data structures are displayed.
• The ways of informational exchange are stated
• A first version of the prototype for testing was created.



Download the Executive Summary:
Executive summary 3.2 Concept Design of the components and energy systems database.pdf

      Report 3.3 Information Base integration

The purpose of this deliverable is to report on the third phase of the development of the building component and energy system database. It contains a description of integrating the information base into the Design4Energy database system to prove the value of the novel design process. Therefor the deliverable is divided into four basic areas of collecting information: building components, energy systems, benchmark content and additional data required. Integration of information is done by collecting, classifying and evaluating data and information in selected areas of the selected building types. Next to the data integration the deliverable also contains important considerations of data representation, practical issues in connecting simulation applications and file formats.


Download the Executive Summary:
Executive summary 3.3 Information Base integration.pdf

      Report 4.1 Domain models and meta model specifications

The Design4Energy platform represents an open platform that will allow different stakeholders to integrate their energy related service modules to further enhance energy efficiency of future buildings. In that context, the main the objective of WP4 is to define and implement the Dynamic Energy Efficient oriented Building Information Platform (DEEBIP) and its connection/integration with energy simulation tools as well as other Design4Energy applications and models.

The key information presented within this report can be summarised as follows:
• This report presents the domain models and meta model specification which build the underlying framework for DEEBIP.
• The report points out which domain models has to be integrated, which information they contain and how can be achieved the joining of these information.
• A consistent modelling across all aspects of the building simulation process is designed.
• An energy enhanced BIM specification is created by the application of a link model of confederated data schemas with the IFC data schema as the main underlying schema.



Download the report:
Report 4.1 Domain models and meta model specifications.pdf

      Report 5.1 Design of communication architecture for intelligent management of O & M

This report proposes a suitable communication architecture that can be used to collect operation and maintenance data at buildings’ and neighbourhood levels to support retrofit programmes. Since there have been many research and commercial efforts in developing such communication architectures, the purpose of this design effort is to use it as the basis for identifying a suitable communication architecture for the Design4Energy project rather than implementing yet another communication architecture.

Furthermore, this report illustrates the interface between the proposed communication architecture and the overall Design4Energy platform which will allow design teams to access sensor data, collected by the communication architecture.

The key information presented within this report can be summarised as follows:
• The key characteristics of a Decision Support System that deploys the sensor data and other maintenance data to support retrofit projects. This discussion illustrates the role and the functional requirements of a communication architecture.
• A survey of various sensors that can be used to capture both energy performance data and user behaviour data.
• A survey and comparison of the current communication architectures developed by the research community and commercial vendors.
• The design characteristics of a suitable communication architecture for the Design4Energy project and an evaluation of the current communication architectures that fulfil the proposed design characteristics.
• A discussion on how the communication architecture can be integrated with the overall Design4Energy platform.



Download the report:
Report 5.1 Design of communication architecture for intelligent management of operation and maintenance.pdf

      Report 5.2 Specification of devices and benchmarking for the development of the decision support tool

Design4Energy project focuses both on the design and the operation phases of the building within its neighbourhood. In line with this scope the work described in this document revealed three main aspects for consideration during building operation

• A sufficient knowledge of the energy system is given to make optimum decisions for retrofit and maintenance.
• Relevant concepts and methods for analysing energy system performance at building and neighbourhood scale are provided.
• A summary of guidelines from standards and benchmarks about energy performances of buildings is given.



Download the report:
Report 5.2 Specification of devices and benchmarking for the development of the decision support tool.pdf

      Report 5.3 Data analytics based on building energy performance modelling

One of the focuses of the Design4Energy project is on the retrofitting scenario and the operation and maintenance stage of the building. In line with this scope the work described in this report presents a workflow and the necessary transfer data analytics to extend the use of Building Information Modelling (BIM) to encompass energy performance analysis in retrofitting of existing buildings.

This document provides guidance on the main information required to be captured when conducting building survey of an existing building. Appropriate methods for translating the building user behaviour during the collection of building information and feedback on the methodology are identified. The necessary steps to capture appropriate information for the building representation are established. The information collected can then be used to inform the energy modelling representation of the building through the use of appropriate modelling schedules and settings
Multiple limitations exist when using BIM to perform Building Energy Modelling (BEM) due to lack of transparency of data transfer. To create a common data model, specific methods and guidance are provided on the good practice when designing in BIM to achieve more accurate representation of the building and the built environment in general. As part of this report guidelines on good practice when designing in BIM (and in particular in REVIT) are provided to assist the architect in exporting good quality data for an adequate building representation.
Facilitating tools are developed to enable transparent exchange of data at different stages of the BIM to BEM process. A series of tools developed bridges the data transfer gap between BIM and BEM: the ‘Enhancer tool’; the ‘Conversion tool’; the ‘EnergyPlus runner’; and the ‘EplusKPI tool’. The ‘Enhancer tool’ offers editing capabilities to incorporate into the gbXML building representation descriptors of the building user behaviour. For the development of the ‘Conversion tool’ a novel method for converting gbXML files to idf files is proposed. Identification of key information on assumptions is enabled through transparent exchange of key information using the ‘idfXML_Template’ method. A tool to automate the process of performing analysis using EnergyPlus, the ‘EnergyPlus runner’, is developed. To predict the future behaviour of the building and energy savings due to maintenance and retrofitting the Key Performance indicators most relevant to the retrofit scenario are identified and their values calculated. Visualisation of the calculated KPIs enables analytical study of the energy analysis results. The KPIs relate to primary energy, energy demand and supply, a thirty year life cycle assessment and indoor environment quality assessment. The possibility to expand to the neighbourhood level to account for the interaction of the building with the surrounding environment and take into consideration the availability of energy sources at the district level is investigated.
Finally, the state of the art in protocols enabling the incorporation of monitoring and basic control in the BIM to BEM workflow is identified. Comparison of the predicted energy performance using the proposed workflow with the measured energy performance is necessary to establish the validity of the assumptions made and of the data transfer process.


Download the report:
Report 5.3 Data analytics based on building energy performance modelling.pdf

      Report 6.1 1st Phase Interoperability Specification Design

In this report, an interoperability specification design is developed for the integrated building lifecycle process encapsulating these three scenarios. This early release of the interoperability specification design defines the interoperation between the various systems (IFC-based BIM components library from WP2, Energy Efficient BIM system in WP4, the Decision Support tool for retrofit and maintenance from WP5, the interoperability execution engine WP6 and the collaborative Design Virtual Workspace in WP7) in the Design4Energy collaborative workspace across the Cross Organizational Business Process Model.

It describes how user requirements and needs, tasks and activities in the scenario can be coherently dealt with by various stakeholders using different BIM tools and technologies for energy efficient, sustainable building design and retrofit.

Download the report:
Report 6.1 1st Phase Interoperability Specification Design.pdf

      Report 6.2 Early Release Design4Energy Execution Engine
      Report 6.3 Design4Energy Interoperability Suite Early Release
      Report 6.4 Design4Energy Interoperability Specifications- Full Release
      Report 6.5 Design4Energy Execution Engine - Full Release
      Report 6.6 Design4Energy Interoperability Suite Full Release
      Report 7.1 Design and implementation of the virtual workspace

The main purpose of WP7 is to develop an interactive virtual workspace that can allow various actors to collectively simulate and assess the impact of various energy solutions within a visual space, with the view to achieving the optimum energy efficiency at building level and/or neighbourhood level. This virtual workspace will offer “Simulated Reality” of energy performance of buildings as close as possible to the physical reality. This will be achieved through integrating the new methodology developed in WP2 to improve current practice, the database library of components and energy systems (developed in WP3), integration of energy simulation tools (WP4) and maintenance and operational data (developed in WP5). The virtual workspace will allow actors to manipulate different building components, energy solutions, current usage parameters of the tenants, energy related parameters (weather, external light, temperature, airflow, etc.) and explore “what-if” scenarios to understand the impact of their decisions within a broader design context. These interactive exploratory features will offer an interactive design space for actors to make validated and qualified choices as early as possible, offering considerations to regulations, user comfort, constraints, and future evolution of the building over time.

Design and implementation of the virtual workspace was driven by scenarios for which three scenarios were identified to highlight design activities: the first scenario considers neighbourhood energy trading context in building design. The second scenario focuses on holistic energy design optimisation during early design phase while the third one is focused on the use of operational and maintenance data in retrofit.

Following the executive summary in section 1, the report starts with an introduction (section 2) outlining purpose, partners’ contributions with a reference to other EU projects and other activities within the D4E project. Section 3 explains the overall approach while section 4 provides a detailed discussion of the holistic design scenario highlighting main activities and requirements. The overall system concept and architecture is discussed in detail in section 5 covering the main components of the platform. Section 6 provides a detailed design of the holistic design scenario with a subset of three mini scenarios. Section 7 presents the implementation plan of the virtual workspace followed by conclusions in section 8. A list of used acronyms and terms are listed in section 9 while section 10 contains a full list of the references used throughout the document.


Download the report:
Report 7.1 Design and implementation of the virtual workspace.pdf

      Report 7.2 1st Phase 3D On-line gaming environment for learning how to build green buildings

This document (D7.2 1st Phase) presents the 3D on-line gaming environment for learning ‘how to design Green Buildings’ developed as part of the D4E project. The idea of the training environment is to enable users to learn individually or collectively through a ‘team space’ to design energy efficient buildings.

An overview of various learning models and theories was provided to understand how people learn. Among these, Constructivism and Humanism theories were selected as the most appropriate theories for this particular task and were used to define a number of learning elements required to foster a learning attitude. This work led to the creation of the D4E learning framework which identified, in addition to the learning elements, a number of skills that learners acquire from using such a training environment as they socially interact with one another through the game. Moreover, and in order to promote such learning elements, the concept flow was used to provide an interactive experience for the players to evoke positive experience.

Download the report:
Report 7.2 1st Phase 3D On-line gaming environment for learning how to build green buildings.pdf

      Report 7.3 2nd Phase Design and implementation of the virtual workspace to explore various design options

The first phase of this work focused on the design and implementation of a new build (reported in D7.1 1st Phase submitted in M12). The work reported in this report builds on the achievements of phase 1 and extends it to cover the design of all three scenarios using a number of use cases and partial implementation of these use cases.

Following the executive summary in section 1, the report starts with an introduction (section 2) outlining the purpose, partners’ contributions with a reference to other EU projects and other activities within the D4E project. Section 3 explains the overall approach while section 4 describes the high level of designing the D4E virtual workspace. The overall system design is discussed in detail in section 5 covering the three-layered system architecture. Section 6 provides a detailed design of the D4E virtual workspace. Section 7 presents the implementation of the virtual workspace followed by conclusions in section 8. A list of used acronyms and terms are provided in section 9 while section 10 contains a full list of the references used throughout the document.

Download the report:
Report 7.3 2nd Phase Design and implementation of the virtual workspace to explore various design options.pdf

      Report 7.5 Final Version - 3D On-line gaming environment for learning how to build green buildings

This report (D7.5) presents the final design and implementation of the 3D on-line gaming environment for learning ‘how to design Green Buildings’ developed as part of the D4E project. The idea of the training environment is to enable users to learn individually or collectively through a ‘team space’ to design energy efficient buildings.

Following the executive summary, the report starts with an introduction (section 2) outlining the purpose, the partners’ contribution (with a reference to other EU projects) and other activities within the D4E project. This is followed by explaining the overall approach for design and implementation in section 3. A number of learning models are then discussed in section 4 together with learning elements and skills defining the D4E learning framework. Design of the 3D on-line gaming environment is presented in section 5 outlining three learning modules and the use of the energy efficient model to structure their content. Section 6 describes the detailed design of the tool identifying specific learning outcomes, activities and tasks. Section 7 presents the implementation of the 3D on-line gaming environment, followed by the conclusions in section 8. A list of the acronyms and terms that are used are listed in section 9 while section 10 contains a full list of the references used throughout the document.

Download the report:
Report 7.5 Final Version - 3D On-line gaming environment for learning how to build green buildings.pdf

      Report 8.2 Benchmarking study

Download the report:
Report 8.2 Benchmarking study.pdf

      Report 10.1 Project website Design

This document describes firstly the structure, functionality and contents of project website, and then a first version of graphic design is shown. Later on, the google analytics result will be presented as an example of the methodology that use in visitor monitoring. Then, a short introduction about the project management system is introduced as a collaborative working space for the project. For internal file sharing, an open source platform is used and implemented in the server facilitating project partners an easy file management method; this document will briefly introduce the functions and advantages of the configured file sharing system in the server. To end this document, further developments will be presented showing the continuous works to be carried out during and after the project.



Download the report:
Report 10.1 Project website Design.pdf

      Manual A10.1 Project Management System

This document serves as a manual of the project management system Teamworkpm.

The PMS is set up based on the Teamworkpm platform, is an easy-to-use online teamwork & project management software application that helps project partners to work together more productively online. Main characteristics are: allows sharing ideas, information, notes; help the consortium stay focused, plan effectively & meet deadlines; web based so the project partners will be able to login from anywhere; task management and milestone tracking functions will allow partners to check and make sure they are met with deadlines; easy communication within the consortium; easy to reschedule and visualize the project with the Gantt chart tool; more tools like time tracking allows users to register their working time.


Download the report:
Manual A10.1 Project Management System.pdf

      Manual A10.1 File Sharing System

This document serves as a manual of the file sharing system used in the project.


A file sharing system with enterprise grade security and control is set up to facilitate an easier internal file management. Different from a traditional website, the system developed based on the Pydio allows a refined control and rich functions with a simple, sleek and beautiful interface. Users can access the docs from anywhere, from any browser of any computer, preview most common formats (audio, video, PDF, Office Documents) and perform a quick search. In the next phase, even assessing the system via mobile applications for iOS and Android will be possible.


Download the report:
Manual A10.1 File Sharing System.pdf

      Report 10.2 First version Awareness & Dissemination plan

This Report lists relevant activities that are essential for and contribute to the dissemination of the project results as well as raise awareness on the topics of the project. The document lists publications (journals) that are targeted for the disseminating and explains briefly their scope. Also conferences, events and relevant fairs are listed. Out of these, events with special interest have been selected and additional information on these events was provided.


Download the report:
Report 10.2 First version Awareness & Dissemination plan.pdf

      Report 10.3 2nd version of the Awareness & Dissemination plan